Manifold Embeddings for Model-Based Reinforcement Learning of Neurostimulation Policies

نویسندگان

  • Keith Bush
  • Joelle Pineau
  • Massimo Avoli
چکیده

Real-world reinforcement learning problems often exhibit nonlinear, continuous-valued, noisy, partially-observable state-spaces that are prohibitively expensive to explore. The formal reinforcement learning framework, unfortunately, has not been successfully demonstrated in a real-world domain having all of these constraints. We approach this domain with a two-part solution. First, we overcome continuous-valued, partially observable statespaces by constructing manifold embeddings of the system’s underlying dynamics, which substitute as a complete state-space representation. We then define a generative model over this manifold to learn a policy off-line. The model-based approach is preferred because it enables simplification of the learning problem by domain knowledge. In this work we formally integrate manifold embeddings into the reinforcement learning framework, summarize a spectral method for estimating embedding parameters, and demonstrate the model-based approach in a complex domain—adaptive seizure suppression of an epileptic neural system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifold Embeddings for Model-Based Reinforcement Learning under Partial Observability

Interesting real-world datasets often exhibit nonlinear, noisy, continuous-valued states that are unexplorable, are poorly described by first principles, and are only partially observable. If partial observability can be overcome, these constraints suggest the use of model-based reinforcement learning. We experiment with manifold embeddings to reconstruct the observable state-space in the conte...

متن کامل

Treating Epilepsy by Reinforcement Learning Via Manifold-Based Simulation

The ability to take intelligent actions in real-world domains is a goal of great interest in the machine learning community. Unfortunately, the real-world is filled with systems that can be partially observed but cannot, as yet, be described by first principle models. Moreover, the traditional paradigm of direct interaction with the environment used in reinforcement learning is often prohibitiv...

متن کامل

Deep Reinforcement Learning for Inquiry Dialog Policies with Logical Formula Embeddings

This paper is the first attempt to learn the policy of an inquiry dialog system (IDS) by using deep reinforcement learning (DRL). Most IDS frameworks represent dialog states and dialog acts with logical formulae. In order to make learning inquiry dialog policies more effective, we introduce a logical formula embedding framework based on a recursive neural network. The results of experiments to ...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Reinforcement Learning using Kernel-Based Stochastic Factorization

Kernel-based reinforcement-learning (KBRL) is a method for learning a decision policy from a set of sample transitions which stands out for its strong theoretical guarantees. However, the size of the approximator grows with the number of transitions, which makes the approach impractical for large problems. In this paper we introduce a novel algorithm to improve the scalability of KBRL. We resor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009